3.430 \(\int \cot ^2(c+d x) (a+b \tan (c+d x))^2 \, dx\)

Optimal. Leaf size=41 \[ -x \left (a^2-b^2\right )-\frac {a^2 \cot (c+d x)}{d}+\frac {2 a b \log (\sin (c+d x))}{d} \]

[Out]

-(a^2-b^2)*x-a^2*cot(d*x+c)/d+2*a*b*ln(sin(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3542, 3531, 3475} \[ -x \left (a^2-b^2\right )-\frac {a^2 \cot (c+d x)}{d}+\frac {2 a b \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + b*Tan[c + d*x])^2,x]

[Out]

-((a^2 - b^2)*x) - (a^2*Cot[c + d*x])/d + (2*a*b*Log[Sin[c + d*x]])/d

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3542

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \cot ^2(c+d x) (a+b \tan (c+d x))^2 \, dx &=-\frac {a^2 \cot (c+d x)}{d}+\int \cot (c+d x) \left (2 a b-\left (a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=-\left (a^2-b^2\right ) x-\frac {a^2 \cot (c+d x)}{d}+(2 a b) \int \cot (c+d x) \, dx\\ &=-\left (a^2-b^2\right ) x-\frac {a^2 \cot (c+d x)}{d}+\frac {2 a b \log (\sin (c+d x))}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.15, size = 82, normalized size = 2.00 \[ \frac {-2 a^2 \cot (c+d x)+i \left ((a-i b)^2 (-\log (\tan (c+d x)+i))+(a+i b)^2 \log (-\tan (c+d x)+i)-4 i a b \log (\tan (c+d x))\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + b*Tan[c + d*x])^2,x]

[Out]

(-2*a^2*Cot[c + d*x] + I*((a + I*b)^2*Log[I - Tan[c + d*x]] - (4*I)*a*b*Log[Tan[c + d*x]] - (a - I*b)^2*Log[I
+ Tan[c + d*x]]))/(2*d)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 67, normalized size = 1.63 \[ -\frac {{\left (a^{2} - b^{2}\right )} d x \tan \left (d x + c\right ) - a b \log \left (\frac {\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right ) + a^{2}}{d \tan \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-((a^2 - b^2)*d*x*tan(d*x + c) - a*b*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c) + a^2)/(d*tan(d*x +
 c))

________________________________________________________________________________________

giac [B]  time = 1.43, size = 98, normalized size = 2.39 \[ -\frac {4 \, a b \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 4 \, a b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, {\left (a^{2} - b^{2}\right )} {\left (d x + c\right )} + \frac {4 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

-1/2*(4*a*b*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 4*a*b*log(abs(tan(1/2*d*x + 1/2*c))) - a^2*tan(1/2*d*x + 1/2*c)
+ 2*(a^2 - b^2)*(d*x + c) + (4*a*b*tan(1/2*d*x + 1/2*c) + a^2)/tan(1/2*d*x + 1/2*c))/d

________________________________________________________________________________________

maple [A]  time = 0.26, size = 58, normalized size = 1.41 \[ -a^{2} x +b^{2} x -\frac {a^{2} \cot \left (d x +c \right )}{d}+\frac {2 a b \ln \left (\sin \left (d x +c \right )\right )}{d}-\frac {a^{2} c}{d}+\frac {c \,b^{2}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+b*tan(d*x+c))^2,x)

[Out]

-a^2*x+b^2*x-a^2*cot(d*x+c)/d+2*a*b*ln(sin(d*x+c))/d-1/d*a^2*c+1/d*c*b^2

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 58, normalized size = 1.41 \[ -\frac {a b \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 2 \, a b \log \left (\tan \left (d x + c\right )\right ) + {\left (a^{2} - b^{2}\right )} {\left (d x + c\right )} + \frac {a^{2}}{\tan \left (d x + c\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

-(a*b*log(tan(d*x + c)^2 + 1) - 2*a*b*log(tan(d*x + c)) + (a^2 - b^2)*(d*x + c) + a^2/tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 4.07, size = 79, normalized size = 1.93 \[ \frac {2\,a\,b\,\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )}{d}-\frac {a^2\,\mathrm {cot}\left (c+d\,x\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,{\left (a-b\,1{}\mathrm {i}\right )}^2\,1{}\mathrm {i}}{2\,d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,{\left (-b+a\,1{}\mathrm {i}\right )}^2\,1{}\mathrm {i}}{2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^2*(a + b*tan(c + d*x))^2,x)

[Out]

(2*a*b*log(tan(c + d*x)))/d - (a^2*cot(c + d*x))/d - (log(tan(c + d*x) - 1i)*(a*1i - b)^2*1i)/(2*d) - (log(tan
(c + d*x) + 1i)*(a - b*1i)^2*1i)/(2*d)

________________________________________________________________________________________

sympy [A]  time = 0.83, size = 83, normalized size = 2.02 \[ \begin {cases} \tilde {\infty } a^{2} x & \text {for}\: c = 0 \wedge d = 0 \\x \left (a + b \tan {\relax (c )}\right )^{2} \cot ^{2}{\relax (c )} & \text {for}\: d = 0 \\\tilde {\infty } a^{2} x & \text {for}\: c = - d x \\- a^{2} x - \frac {a^{2}}{d \tan {\left (c + d x \right )}} - \frac {a b \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} + \frac {2 a b \log {\left (\tan {\left (c + d x \right )} \right )}}{d} + b^{2} x & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+b*tan(d*x+c))**2,x)

[Out]

Piecewise((zoo*a**2*x, Eq(c, 0) & Eq(d, 0)), (x*(a + b*tan(c))**2*cot(c)**2, Eq(d, 0)), (zoo*a**2*x, Eq(c, -d*
x)), (-a**2*x - a**2/(d*tan(c + d*x)) - a*b*log(tan(c + d*x)**2 + 1)/d + 2*a*b*log(tan(c + d*x))/d + b**2*x, T
rue))

________________________________________________________________________________________